310 research outputs found

    Successful Medical Management of Status Post-Roux-en-Y-Gastric-Bypass Hyperinsulinemic Hypoglycemia

    Get PDF
    Roux-en-Y gastric bypass (RYGBP) is the most commonly performed type of bariatric surgery, which is used in the treatment of obesity and type 2 diabetes. Recent case reports and case series have described a rare complication of RYGBP, status post-gastric-bypass hyperinsulinemic hypoglycemia, which was mainly managed successfully with pancreatectomy. In this letter, we describe the first successful management of status post-gastric-bypass hyperinsulinemic hypoglycemia with diazoxide

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    Towards an automated analysis of bacterial peptidoglycan structure.

    Get PDF
    Peptidoglycan (PG) is an essential component of the bacterial cell envelope. This macromolecule consists of glycan chains alternating N-acetylglucosamine and N-acetylmuramic acid, cross-linked by short peptides containing nonstandard amino acids. Structural analysis of PG usually involves enzymatic digestion of glycan strands and separation of disaccharide peptides by reversed-phase HPLC followed by collection of individual peaks for MALDI-TOF and/or tandem mass spectrometry. Here, we report a novel strategy using shotgun proteomics techniques for a systematic and unbiased structural analysis of PG using high-resolution mass spectrometry and automated analysis of HCD and ETD fragmentation spectra with the Byonic software. Using the PG of the nosocomial pathogen Clostridium difficile as a proof of concept, we show that this high-throughput approach allows the identification of all PG monomers and dimers previously described, leaving only disambiguation of 3-3 and 4-3 cross-linking as a manual step. Our analysis confirms previous findings that C. difficile peptidoglycans include mainly deacetylated N-acetylglucosamine residues and 3-3 cross-links. The analysis also revealed a number of low abundance muropeptides with peptide sequences not previously reported. Graphical Abstract The bacterial cell envelope includes plasma membrane, peptidoglycan, and surface layer. Peptidoglycan is unique to bacteria and the target of the most important antibiotics; here it is analyzed by mass spectrometry

    Global metabolic analyses of acinetobacter baumannii

    Get PDF
    Acinetobacter baumannii is rapidly emerging as a multidrug-resistant pathogen responsible for nosocomial infections including pneumonia, bacteremia, wound infections, urinary tract infections, and meningitis. Metabolomics provides a powerful tool to gain a system-wide snapshot of cellular biochemical networks under defined conditions and has been increasingly applied to bacterial physiology and drug discovery. Here we describe an optimized sample preparation method for untargeted metabolomics studies in A. baumannii. Our method provides a significant recovery of intracellular metabolites to demonstrate substantial differences in global metabolic profiles among A. baumannii strains

    Hypoglycaemia following upper gastrointestinal surgery: case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperinsulinemic hypoglycemia is relatively recently recognized in persons undergoing bariatric surgery although knowledge and experience with this condition may not be commensurate with the number of such procedures being performed globally. This paper presents a novel case as an example of how such patients may present and how they may be investigated.</p> <p>Case Presentation</p> <p>A 69-year-old man was assessed 3 months post-fundoplication surgery for postprandial hypoglycaemia with neuroglycopenia that became progressively severe. A 72-h fast failed to show hypoglycaemia. During a clinic visit, the patient became confused and had a low plasma glucose, high plasma insulin, and high plasma C-peptide; symptoms were relieved with glucose. No tumours were visualized on CT, MRI, or endoscopic ultrasound. A total body Indium111-octreotide scan was negative. Selective arterial calcium stimulation showed a high insulin gradient in the splenic and superior mesenteric arteries, suggesting diffuse pancreatic beta cell hyperplasia. The patient declined pancreatic resection and recurrent symptomatic hypoglycaemia was successfully prevented with low dose octreotide.</p> <p>Conclusions</p> <p>Although increasingly recognized following bariatric surgery, this is the first reported development of NIPHS (non-insulinoma pancreatogenous hypoglycemia syndrome) following fundoplication surgery, as well as the first documented use of octreotide in post-operative NIPHS. Medical management may be an alternative to surgery for patients with this rare condition.</p

    Uridine-derived ribose fuels glucose-restricted pancreatic cancer.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
    corecore